Tetraploid embryos rescue embryonic lethality caused by an additional maternally inherited X chromosome in the mouse.

نویسندگان

  • Y Goto
  • N Takagi
چکیده

Mouse embryos with an additional maternally inherited X chromosome, i.e., disomic for XM (DsXM), cease to grow early in development and have a deficient extraembryonic region. We hypothesized that the underdeveloped extraembryonic region is attributed to two copies of XM that escape inactivation due to maternal imprinting. To examine the validity of this hypothesis and throw more light on the significance of X chromosome dosage on cell differentiation, we generated DsXM(XMXMXP and XMXMY) embryos at a high frequency taking advantage of the elevated incidence of X chromosome nondisjunction in female mice heterozygous for two Robertsonian X-autosome translocations, Rb(X.2)2Ad and Rb(X.9)6H. Although two XM chromosomes seem to remain active in both trophectoderm and primitive endoderm, detailed histological examination showed that the polar trophectoderm derivatives (ectoplacental cone and extraembryonic ectoderm) are severely affected, but the primitive endoderm derivatives (visceral and parietal endoderm) are relatively unaffected. Successful rescue of DsXM embryos by aggregation with tetraploid embryos show that X chromosome inactivation occurred normally leaving one X active in epiblast derivatives. Thus, two copies of active XM chromosome in cells of the polar trophectoderm cell lineage seem to be the main cause of early lethality shown by DsXM embryos as a result of failure in formation of ectoplacental cone and extraembryonic ectoderm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Round Spermatid Injection Rescues Female Lethality of a Paternally Inherited Xist Deletion in Mouse

In mouse female preimplantation embryos, the paternal X chromosome (Xp) is silenced by imprinted X chromosome inactivation (iXCI). This requires production of the noncoding Xist RNA in cis, from the Xp. The Xist locus on the maternally inherited X chromosome (Xm) is refractory to activation due to the presence of an imprint. Paternal inheritance of an Xist deletion (XpΔXist) is embryonic lethal...

متن کامل

Hybrid lethal systems in the Drosophila melanogaster species complex. II. The Zygotic hybrid rescue (Zhr) gene of D. melanogaster.

Hybrid females from Drosophila simulans females x Drosophila melanogaster males die as embryos while hybrid males from the reciprocal cross die as larvae. We have recovered a mutation in melanogaster that rescues the former hybrid females. It was located on the X chromosome at a position close to the centromere, and it was a zygotically acting gene, in contrast with mhr (maternal hybrid rescue)...

متن کامل

The genetic factors altered in homozygous abo stocks of Drosophila melanogaster.

Females homozygous for the maternal-effect mutation abo (2-44.0) produce a large fraction of eggs which arrest during embryogenesis. Increasing doses of defined heterochromatic regions inherited by offspring of abo mothers from their fathers function zygotically to bring about a partial rescue of the abo-induced embryonic lethality. Another property of the abo mutation is that the severity of t...

متن کامل

Bex1, a gene with increased expression in parthenogenetic embryos, is a member of a novel gene family on the mouse X chromosome.

Parthenogenetic and normal blastocysts were compared using differential display analysis as a means to identify new imprinted genes. A single gene was identified with increased expression in parthenogenetic blastocysts, suggesting it might be an imprinted gene expressed from the maternally inherited allele. The gene, named Bex1 (brainexpressedX-linked gene), maps near Plp on the mouse X chromos...

متن کامل

Differential regulation of imprinting in the murine embryo and placenta by the Dlk1-Dio3 imprinting control region.

Genomic imprinting is an epigenetic mechanism controlling parental-origin-specific gene expression. Perturbing the parental origin of the distal portion of mouse chromosome 12 causes alterations in the dosage of imprinted genes resulting in embryonic lethality and developmental abnormalities of both embryo and placenta. A 1 Mb imprinted domain identified on distal chromosome 12 contains three p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 125 17  شماره 

صفحات  -

تاریخ انتشار 1998